¥ APl Document

©
dotMailer

The Digital Marketing Agency

APl Document

The dotMailer APl uses a SOAP interface and is remarkably easy to use. You can find out details
on the methods at http://apiconnector.com. If you have had no experience of using SOAP you
can look at some of the following links:

http://en.wikipedia.org/wiki/SOAP

http://www.w3schools.com/soap/default.asp

You can use the APl however you wish, whether it be synchronising to your CRM, uploading and
sending campaigns, advanced data management, etc. This document will show you how to use
the methods with C#, PHP, and classic ASP.

The username and password you need to use for the APl has to be a managed login; you can
create one of these within your dotMailer account. When you login into your account, you can go
to the “My Account” section in the top right of your screen

MY ACCOUNT

Click on manage users:

¥ Manage Users

And click “add new” and you will see this screen

Emad address Password 7
apiiapi. com

First marme Last nama
Lt Dascrgtion
AdaDelele Enatde bo aliow the user ko add & delels campaigns
Campagns

L AP Adiaas Enatée ko abow AP1 Acoess

Contacts Enatie i 380w e USEr H{CesS 10 e Lonladt SECon and \iew emad J00NeEseE 307055 M sile
Ediice Enatis b alow the user b ¢:08 gusiing campaigns.
Reporar Enadie o allow the user ioview reporiing
Sender Enatie ta aliow the user o send campaigns
Templale Enatée bo aBow he BSer icess bo ihe lemplate Bdary
AdrEiE At

.-_I.II". | SRAVE |

You need to make sure the API Access permission is selected, and then save the account. You
will then be able to use these details to login to the API.

O
dotMailer

APl Document

The API can be used for many different purposes; the main one will be contact management. To
learn how to use the functions within the APl you will need to know the structure of the objects,
most notably the contact object which looks like:

<ID>int</ID>
<Email>string</Email>
<AudienceType>Unknown or B2C or B2B or B2M</AudienceIype>
<DataFields>
<Keys>
<gtringrstring</string>
<string»string</string>
</Eeya>
<Values>
<anyType />
<anyIype />
< /Values>
</DataFields>
<0OptInTyperUnknown or Single or Double or VerifiedDouble</OptInType>
<EmailTyper»PlainText or Html</EmailType>
<Notearstring</Hotesa>

This is a standard type of SOAP object, having normal datatypes within it. The only part of this
which may prove complex is the datafields - values fields. This is because they are flexible types.
Because of this you will need to specify the type of value you are passing through. You will see
how to do this below in the code examples.

You will not be able to used standard matched pairs through HTTP posts to use the API as the
data structures are hierarchical/nested.

You can see the other data structures at

The best way to learn to use the APl is through examples;

dotMailer

/e\

APl Document

NET

To use the API within .NET is very simple. You will need to add the API as a web reference within
Visual Studio. This document will show you how to use the .NET 2.0 web reference instead of the
newer 3.0 service reference procedure. You can you this by right clicking on the project in the
solution explorer and click “add service reference”, then click on the “advanced” button at the

bottom

Add Service Reference M
To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.
Address:
| - Discover |~
Services: Operations:

MNamespace:

ServiceReferencel

[ok][conce

Then click the add web reference button

[Add Web Reference...]

This will bring up the add web reference screen.

The URL to enter is http://apiconnector.com — if this is successful you should see the following
details then simply click add reference.

Add Web Reference I« [ER=5C=)
Navigate to a web service URL and click Add Reference to add all the available services.
Obck O d & &
URL: http://apiconnector.com/ * H6e
.| Web gervices found at this URL:
API 1 Servce Fount

APIConnector for integration with our email marketing system. You may only E b
access thas system when the account you are using has been granted APL

permicsion, FUrthesmore, You may ot use Your main account = 8 Mmanaged [httpe//apiconnector.com/apiasmiwsdl |
login must ba used.

The fallewing are
the Service Doscription,

For a farmal definit please review

AddContactToAddressBook
Adds & contact to a given addrass book Web reference name:
« AddContactsToAddressBook

Adds contacts in bulk to a given address book. Import format can either
be CSV or Excel.

eom.apiconnector

Add Reference
* CreatefsddressBook
Crestes an address book

* CreateCampaian
Creates a campaign. Will be validated before saving.

s CreateContact
Creates a contact

The APl Web Reference will then have been added to your solution.

O
dotMailer

APl Document

Now you can start creating your integration
The first methods we will go through are returning data as these methods are simpler in struc-
ture. The below example is how to retrieve a campaign which is already in dotMailer

public getCampaign()
i
string username = "examplefexample.com™; /S varisble for your username
string password = "abeclZ3xyz"; [/ wvariable for your password
int campaignid = 1;
var client = new NewAPI.com.apiconnector.API();//crezte an instance of the API

var campaign = client.GetCampaigniusername, password, campaignid);
f/ call the getCampaign method, pass in the arguments and return the result

The below diagram show in more detail the structure of creating the instance of the API

Whal you wanl o — Mame of your Web Reference
name your inslance ——]—

var client = new MewAPI.com.apiconnector.API():

—E b——— Instance of the API
MName of your project

This class is quite self explanatory, it creates an instance of the APl and the calls the getCam-
paign method with the required arguments. It will return the campaign as a campaign object
called campaign. Soyou could the get the information about the campaign like

string html = campaign.HTMLContent;
This will create a string call html with the HTML of the campaign in, you will be able to do this for
all of the contents of the campaign object (to see the structure of the any of the objects please

look at the apiconnector.com site)

Or you can look at the campaign object e.g.

gn = glient.GetCampaign (username, password, campaignid):;

var &
- = mmpaign|{NewAPI.com.apiconnector.APICampaign} |
==l e

[FromMName Q - ™

& fromMameField Q - "

[Zr HTMLContent A+ "TEXT <ffont> "
é hTMLContentField A+ "TEXT <ffont> "
rid .

& idField -

[Name 4 + "New Campaign”™

& nameField 4+ ™ew Campaign”

[PlaintextContent 4, = "PlainTextContent™
%plainb&xﬁ:nnt&nﬂ:ield 4 + "PlainTextContent™

7 ReplyAction WebMailForward
replyActionField WebMailForward
" ReplyToAddress Q- " - - B
& replyToAddressField [@ « © - - B
9 Status Unsent

-

O
dotMailer

o

APl Document

The same structure of class is used to retrieve data for other objects e.g. a contact

public GetContact(}

string username = "";

string password = "";

string email = "test@test.com™;
var client = new HewRAPI.com.apiconnector APFI();
wvar contact = client.GetContactByEmail (username, password, emaill);

With the contact object you will notice that the datafields are an object within the contact object
e.g.

var ?:ontacté = client.GetContactByEmail (username, password, ema
E @ comact|{NewAPI.com.apiconnector..ﬁ.PIComﬁct} I

27 AudienceType Unknown

& audienceTypeField Unknown
El 7% DataFields {MNewAPL, com, apiconnector . ContactDataFields}
2 Keys Istring[6]} WAPL.com.apiconnector. ContactDataFields}

id.king @dotmailer.co.uk”

keysField strin
: . {string[E]) id.king@dotmailer.co.uk™

[3 Values {object[&]}
& valuesField | {object[s]}

N ID 24319
& idField 24319
7" Notes Q™
& notesField q-"
7 OptInType Single
& optInTypeField Single

The datafields object contacts two arrays, one called keys which is a array of strings which con-
tains the names of the dataFields, and an 2nd array called values which is a array of objects. The
values objects contains the values of the dataFields, it is an array of objects as it is capable of
containing strings, ints, Booleans and dates.

You can get the values of these by:

NewAPI.com.apiconnector_ ContactlDataFields datafields = contact.DataFields;

string[] keys = datafields._Keys;
object[] wvalues = datafields.Values;

Then you can iterate through the arrays to get the values out

dotMailer o

APl Document

Inserting data will require more code as you need to populate the fields before you call the
method, the below method is inserting a campaign

public InsertCampaign(}

{
string username = "";
string password = "";
var client = new NewAPI_ com.apiconnector_ ZEI();
var campaign = new NewRAPI_ com.apiconnector RPICampaigni);
J/fecreate an instance of a campaign
campaign.Name = "New Campaign™;
J/populate the name of the campaign
campaign.Replyhction = NewAPI.com.zpiconnector._ Replyhctions . WebMailForward;
J/=set the reply type this is set to forward mail to 2 email address
campaign.ReplyToAddress = "reply@test.com™;
J/the email address to forward replies to
campaign.Status = NewAPI.com.apiconnector.CaempeignStatus.Unsent;
// the status of the campaign, this should normally be unsent
campaign.Subject = "sukbject™; // the subject line
campaign. HIMLContent = "<html>Content<z href="http=3UNSUBS$"'>Unsubscribe</a*></html>"";
S/ the html content, this would normally be retrieved from & different source
campaign.PlaintextContent = "The Plain Text Content http://$UNSUBS™;
S/ the plain text content, all content will reguire an unsubscribe link
var result = client.CreateCampaign(usernams, password, campaign);
ff ecall the CreateCampaign Method and pass in arguments
}

Inserting a contact is done in the same way, except you have the datafields object to insert as
well, the code for this looks like

public RddContacti])
{

string username = "";
string password =

var client = new NewAhPI.com.zpiconnector.ZPI(}; //creste &n instance of the API
wvar contact = new NewRAPI_ com.apiconnector RPBIContact(); //create an instance of a2 contact

contact.Email = "test@test.com™;

J/populate the contact with an email address (this is the only mandatory field)
contact_ludienceType = NewAPI_ com.aspiconnector.ContactBudienceTypes BZB;

f/ populate the contact with and audience type this example is Business to Business
contact _EmailType = HewlAPI_com._apiconnector.ContactEmailTypes_Html;

S/ populate the contatc email type this will decided whether it will send a plain text
f/email or HTML to this contact

contact ID = -1; /) this does not need to be specified here as we are creating the contact
contact _Notes = "String of notes"; //Hotes on the contact

contact _OptInType = HewlPI_com_apiconnector_ ContactldptInTypes_Double;

/{ the manner the contact was subscribed

contact.DataFields = new NewAPI.com.apiconnector.ContactDataFields();
ff the Datafields of the contact is z S0AP object and need to be created

string[] keys = new Stringl2];

ff This is an srraey of strings for the names of the datafields

keys[0] = "FirstHame" f/ These have to match up with the dataFields in dotMailer
keys[l] = "LastName";

J/ you will be able to get these field names through the ListContactDatalabels method
keys[2] = "DateldfBirth"™;

object[] wvalues = new object[3];

fi as these can be of any types it has be created as a2 array of objects
walues[0] = "Joe";

wvalues[l] = "Bloggs";

values[2] = new DateTime (1982, 12, 01); // 01/1Z/1382Z2

contact_DataFields Keys = keys; //assign the keys array to the contact
contact_DataFields_Values = wvalues; // assign the wvalues array to the contact

Q var result = client_CreateContact (username, password, contact);

// makes the call to the api and returns the result
lIll1[I\'I=IiIlH!I.C

dotMailer No1 Croydon, 12-16 Addiscombe Road, East Croydon, CRo oXT. T: +44 (0)20 8662 2762 F: +44 (0)20 8181 4594

APl Document

These are the basic methods of the APl in .NET, if you find you have any problems with these
then please contact

PHP doesn’t have an inbuilt SOAP wrapper, so in the example we are using PHP_SOAP.dll which
will come with most LAMP installations.

To enable this SOAP wrapper you have to edit you php.ini file to include
extension=php_soap.dll

You will also need to make sure that the php_Soap.dll file is in your ext directory

We will start with a simple retrieval of a campaign the code to do this is

< ?php
fusername = ""; //API username
S$password = ""; //API Password

Scampaignid = 1;
/{ campaignid(you can get this from the listcampaigns method

S$client = new SoapClient ("http://apiconnector.com/api._asmx?WSDL™);
f/make an instance of the API

Sparams = array("username” =* jusername, "password" =» $password, "campaignId" =% fcampaignid);
f/Builds all the arguments into an array

sresult = Sclient->GetCampaign($params);
Ff calls the API method with aruments and returns result as $result

$campaign = jresult->GetCampaignResult;
f/get the cempaign object from the result

$htmlresult = $campaign->HTMLContent;
Ffgets the HTMLcontent from the campaingn object
EEs

This code is firstly defining the username, password and campaignld, the three arguments
needed by the GetCampaign method. Then it builds the arguments into an array and passes this
array into the method which returns the result as an object called result. The result object is then
broken down into it constituent parts

dotMailer

/oﬁ\

O
dotMailer

APl Document

The below code is to return a contact by email address

The result variable which is returned is a contact object which you need to handle like an array of
objects, to get the data out of this you need to

<?php

susername = ""; J/your api username

$password =""; ffyour api password

$email = ""; fF/ithe email you wish to find

jclient = new SoapClient ("http://apiconnector._ com/api_ssmx?WSDL™);

ffcreating a new instance of the APT
jparams = array("username" =¥ Fusername, "password" =¥ Spassword, "email" =r Semail);
f/ Building the arguments for the S0AP query

jresult = Sclient-*GetContactByEmail ($params) ;
// calling the API method

var_ dump($result);

S/ this will display the result into a webpage

>

Then you can iterate through the two arrays to get all the data out.

sresult = $client->GetContactByEmail ($params); //returns the result as a variable

$Contact = S$result->GetContactByEmeilResult;

f/Gets the contact object from the result wvariable

semail = $Contact->*Email; // gets the email from the contact object

$emailid = $Contact-*ID; // Gets the emailid from the contact object

$DataFields = $Contact->DataFields; // gets the datafield object from the contact object
$keys = $DataFields->Keys; // gets the keys object from the datafields object

$string = $keys-»string; f/ gets the array of key names from the keys object

$keyl = $stringl[0]l; //FirstHame

svalues = $DataFields->Values; // gets the walues object from the datafields object
$hnyType = $vaelues—»anyTlype; // gets the anyType object from the Values object
$valuel = $4nyType[0]; //Value for Firstlame

dotMailer No1 Croydon, 12-16 Addiscombe Road, East Croydon, CRo oXT. T: +44 (0)20 8662 2762 F: +44 (0)20 8181 4594

APl Document

To insert data into dotMailer through the APl is again similar; the code below is how you would
insert a contact into dotMailer

<?php

fusername = ""; //apiusername

$password = ""; //api password

$addressbookid = 1; //addressbook id for where you want to insert the contact
$email = ""; /f/email asddress you want to insert

$hudienceType = "Unknown"; // Rudience type, this can be BZE, Bic etc
$0ptInType = "Unknown"; // OptInType, this can be single, double etc

$EmailType ="Html";

f/Email Type, this is whta kind of email the contact will recieve e.g. html or plaintext
$FirstName = "FirstName™; // firstname datafield

$LastName = "LastName™; // lastname datafield

$dob = mktime(0,0,0,12,1,1582);

f/this datafields will have to be already created in dotMailer

jclient = new SoapClient("http://apiconnector.com/api._asmx?WSDL");
f/fcreate new instance of the api

$keys = array("FIRSTHNAME", "LASTNAME", "DOB"); // creates an array of the datafield names

$typedVarl = new SoapVar($FirstName, XSD_STRING, "string”, "http://www.w3._org/Z001/¥MLSchema"); //creates the values
25 3 set datstype

$typedVarZ = new SoapVar(jlastName, XSD_STRING, "string™, "http://wwWw.wi.org/2001/X¥MLSchema™}; S /fsee other notes
$typedVard = new SoapVar($dob, XSD DATE, "date™, "http://www.w3.org/Z2001/HMLEchema™);

$Values = array($typedVarl, $typedVarZ, $typedVard); //makes an mixed array of the walues

$Datafields = array("Keys" =» $keys, "Values™ => $Values); // makes an array of the datafield

scontact =array("Email" => Semail, "Audiencelype" => $hudiencelype, "0OptInIype" => 50ptInlype, "EmailTlype" =>
$EmailType ,"I0D"=» -1, "DataFields" =» $Datafields);

f/ creates an array which mimiks the structure of the contact object

$params = array("username” =¥ jusername, "password"™ = Spassword, "contact"™ =» Scontact , "addressbookId" =¥
$addresshbookid) ;

ff builds an array of the parameter to pass into the API method

$result = $client->AddContactTolddressBook ($params);

f/ calls the API method with the arguments and returns the result
I

What you may notice about the code above is the use of the variable builder i.e

$typedVarl = new SoapVar($§FirstName, XSD_STRING, "string"”, "http://www.w3_ org/2001/XMLEchema™);

What this does is sets the type of the dataField, this needs to be done else the APl will reject the
value as it won’t know what type it is.

These are the basic methods of using the APl within PHP, if you have any difficulties using this
then please contact support@dotmailer.co.uk

O
dotMailer

